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NOTICES I

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
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I. SUMMARY OF RESEARCH

I Under a previous contract (NO0019-77-C-0299) an aircraft simulation

model was developed for the analysis of near field pattern effects

due to an airborne antenna. The solution was based on the geometrical

I theory of diffraction (GTD). That model treated the fuselage as a

composite elliptic cylinder and the wings and stabilizers as finite

I flat plates. The near field formulation developed has been used to

calculate the radiation patterns in and close to the roll and elevation

J planes of the aircraft. The numerical results obtained were in excellent
1

agreement with the measured patterns

I However as the previous solution was used to analyze various

private, commercial and military aircraft, it became apparent that

our simple aircraft model was unable to simulate the arbitrary sub-

structures of the aircraft, such as T-tails, jet engine-housing, and

-_ numerous structures being attached to the basic fuselage and wings.

For these reasons, the previous solution was extended under the present

contract (N00019-78-C-0524) in terms of a multiple plate model
2 for

the aircraft substructures. This multiple plate approach allows one

to model the various substructures by boxing-out the structure using

a set of finite flat plates. The finite flat plates are chosen to

-. be the basic building blocks to simulate these substructures in that

they are easy to input in the computer code and are efficient

to analyze. The basic concept of the multiple plate model is described
I! here and one specific example is used to demonstrate its validity.
@4

More numerical results with accompanying measurements can be found
2

in the first quarterly report

Consider a bent plate attached to a circular cylinder as shown

in Figure 1. The source, a monopole antenna, is located at Q'. The

various rays contributing to the radiation pattern are illustrated£
[
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Figure 1. A bent plate attached to a circular cylinder.

in Figure 2. Note that in the present solution higher-order terms

are included in the analysis. The source, reflected, and diffracted

terms used in our previous solution I are shown in Figure 3. The super-

imposed pattern using these three GTD terms is illustrated in Figure

3d. One should note the disconinuities in this pattern at r 140 and
450. These discontinuities are compensated for by the higher-order

GTD interaction terms illustrated in Figure 4. As before, these terms

are plotted relative to the same signal level such that one can observe

their relative significance. It is clear that these higher-order terms

can be significant in certain sectors of the pattern. In order to

demonstrate how the complete GTD solution creates the desired total

pattern, various combinations of terms are illustrted in Figure 5.

The geometrical optics solution is shown in Figure 5b and, as before,

several discontinuities exist in this pattern. The total superposition

of the recently introduced higher-order terms is shown in Figure 5c.

It is very interesting that the patterns illustrated in Figure 3d and 5c

superimpose to give the smooth total pattern shown in Figure 5d. As

with any GTD solution for a complex structure, one can compute even

higher order terms. However, there are two major problems with adding

such terms beyond those included here: 1) the accuracy of the GTD

diffraction solutions become questionable, 2) the numerical solution

2
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(a) source field (S) (b) reflected field (R)

(c) diffracted field (D) (d) S + R + D

Figure 3. Radiation patterns due to various GTD terms.
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(a) reflected/reflected (b) reflected/diffracted
fields (R/R) field (R/D)

(c) diffracted/reflected (d) diffracted/diffracted
field (D/R) field (D/D)

Figure 4. Radiation patterns due to the second
order interaction GTD terms.
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(a) 8 + R (b) geometric optics
solution.
(S + R + RR)

(c) second order interaction (d) total solution.
GTD terms.
(R/R + R/D + D/R + D/D)

Figure 5. Radiation patterns due to various
combinations of the GTD terms.
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becomes very inefficient. Furthermore based on cases examined to date,

it appears that the major structures found on aircraft can be adequately

solved using the interaction terms considered here. In order to illustrate

the various GTD mechanisms they are all shown in Figure 2 in terms] of ray paths. The previous example was used to illustrate the various

GTD terms included in the present analysis. The next example is used

to demonstrate the validity of the present solution.

The geometry illustrated in Figure 6 is included in that it nds

to resemble a more realistic aircraft configuration. The roll p, le

measured and calculated patterns are shown in Figure 7. Two sets of

measured and calculated patterns are illustrated in Figures 8 and 9

for 680 and 1120 conical pattern cuts. In each case both the Ee and

E components of the near zone field are plotted relative to the same

radiation level. In addition there is very good agreement between

calculated and measured patterns. The above patterns are presented

to illustrate the fact that our numerical solutions can solve the pro-

posed type of airborne antenna problem.

A second aspect of our analysis of airborne antenna patterns

under the present contract is to investigate ways to analyze the complete

near field volumetric pattern. In order to accomplish this goal, the

first step is to adopt a three dimensional model for the aircraft fuselage.

The model must provide a good approximate shape for the fuselage in

the antenna studies not only in the neighborhood of the roll and ele-

vation planes but also in the regions close to the nose and tail of

the aircraft. Furthermore, the model must be efficient and of a form

that it can be adopted for the fuselage-wing analysis, i.e., finite

flat plates can be easily attached to allow the studies of fuselage-

wing interaction. In this report, a surface of revolution model (namely,

a prolate spheroid) is chosen to simulate the aircraft fuselage. Unlike

the previous composite cylinder model, the prolate spheroid is a doubly-

curved surface with finite principal radii of curvature and is apparently

a better approximation for the fuselage.1.7



Figure 6. Test geometry with flat-plate engine model.
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Once the model is decided for the fuselage, the next step is

to investigate the radiation from antennas on this doubly curved convex

surface. This leads to the studies of radiation from sources on general

perfectly conducting convex surfaces. This problem was treated previously

for torsionless surface rays. Subsequently solutions were given for

cylindrical and conical surfaces 3 -5 , where torsional surface rays exist.

Under the present contract, the previous GTD solutions 3'4'5 were extended

to obtain a uniform high-frequency solution for the radiation from

apertures and monopoles which may excite torsional surface rays on

a perfectly conducting, smooth, convex surface. The detailed analysis
6of this work was presented in the third quarterly report , only a brief

summary is given here.

Consider a source located on a perfectly conducting convex surface

at Q', as shown in Figure 10. The high-frequency solution described

PL
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Al AgAAOA * A A A

n t' A^

nsxn=b

of~~ AAAA

() FIELD POINT IN b b

SHADOW REGION (b) FIELD POINT IN

LIT REGION

Fjiurr 10. R'.% emanating from a source on a convex surface.
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here employes the ray coordinates of the GTD. Thus in the shadow region

the radiation from Q' follows a surface ray to Q where it sheds tangentially

from the surface to the field point Ps; whereas in the lit region, the

radiation follows the incident ray of geometrical optics to PL in the

direction of the unit vector s. At Q the orthogonal unit vectors

and i (i.e., parallel to the ray and normal to the surface, respectively)

I are introduced along with the binormal unit vector (b = t x n). At Q'

these same unit vectors are primed. In the lit region, n = b x s where

bS = b is perpendicular to the plane of incidence.

The high-frequency electric field is given by = : + bEb for

points away from the convex surface in both the shadow and lit regions.

Expressions for these field components have been deduced from a careful

study of the cylinder and sphere conical problems in which higher order

terms are retained in the asymptotic solutions; in addition, experimental

results for sources on a spheroid were helpful in the generalization

to the general convex surface.1
Consider now a magnetic current moment pm tangent to the surface

at Q'. A complete description of this solution can be found in Reference

6, however, a simplified form is presented here.

I In the lit region:

En p--- Pb ) (H-+T2 -Fcos0')+ )Tt + O(mj 2 ) (1)

Eb -b )T F+(P .t')(Hlcosi+F e- + 0(m 2,rm3) (2)

I
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In the shadow region:

En r -jk ( ^)He jkt p (Q.)I/ d 0 eJks  (3)
n "Jk Pm em.- F' -- , + O~ m "2 )( 3 )

(4)

Note that TO = Tpg(Q');

9C

Ijk 11/3 e - -
9m) S+( i. F- + Hi ose1

[2P Q' 11/3 1/3 (9' z ____c 2 l+Tcos20i

in which T and p (Q') are the surface ray torsion and radius of curvature

at Q', respectively. In the lit region the various terms are found

by projecting the incident ray onto the tangent surface at Q'. The

quantities H, H , S and Sj contain Fock type functions which depend

upon the surface parameters at Q', and in the shadow region, upon the

surface ray trajectory. The angles between adjacent surface rays at

Q' and Q are dip and d*,respectively and pc is the caustic distance
0 0

at Q.

In the monopole case, the expressions for the electric field

in the lit region are given as

H L+T coso'i SJ -ks

-k { 0 k 2 and (5)
n 7r 4sin() 2 2i e O

l+T CosG Ja
Eb -It sinOiT0F e ks (mt (6)

whereas, in the shadow region

14
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+k -HejktFP 3(Q') / .kgj HekF--d eS + O(m-2 )' and (7)

n I[Pg(Q)J 1/6 /sr,,+IT

_jktFrP(Q,) 1/6 T ejks 2

b"" TOSe L F- + O(m ) . (8)

[F
The previous expressions reduce to the geometrical optics field in

the deep lit region ind to the GTD creeping wave field in the deep

shadow region. The expressions for the lit and shadow regions join

smoothly at the shadow boundary. As expected, they reduce to the asymp-

totic solutions for the circular cylinder and sphere cases, but the

higher order terms in "m" must be retained to pass smoothly to these

itwo limiting cases. As the radii of curvature of the surface become

infinite, To = 0 and Equations (1), (2), (5) and (6) simplify to the

L field of a current moent on a ground plane.

Now that the high frequency electric field is given in terms
of the surface ray coordinate system (namely, a ray launches from the

source Q' ) and traverses along the geodesic path to the shedding

point Q , and then propagates along the tangent direction at Q toward

the observation direction r( rr) ; the major task remaining is to

Idetermine the unique geodesic path for a given radiation direction.

This goal is accomplished and the detailed analysis is given in theEsecond quarterly report , in which a numerically efficient and accurate
scheme has been developed for determining the geodesic path in the

case of an antenna radiating from a general convex surface of revolution.

The surface of revolution is of interest in that it provides an analytical

model for the aircraft fuselage structure. A computer program was also

developed to solve the governing nonlinear equations using the secant

(iteration) method. Some numerical results in terms of a family of

geodesic curves are presented in Reference 7 for the case of sphere,

prolate spheroid and cylinder.

15



Once the geodesic path is determined, one is ready to test the

newly developed solutions (Equations 1-8) by applying it to calculate

the radiation from slots and monopoles on perfectly conducting bodies.

Some numerical results are obtained for the cases of an antenna radiating

from circular and elliptic cylinders, cones and spheroids. In Reference 6,

calculated results obtained by using the uniform GTD solutions are

compared with the eigenfunction solution and/or experimental measurements

and the agreement is excellent. Some examples are presented here.

The patterns of a radial slot on a cone are shown in Figure 11 which

levi
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Figure 11. Radiation-patterns of a radial slot in a cone.

compare very well with results obtained from an eigenfunction solution.

In Figures 12 and 13, the patterns of a circumferential slot and monopole

16

- -I



0

),e
-10 90

dB Es

I

-30•

- MEASURED
--- UTD

I--

3,):6 72 108 144 180

'k( DEGREES)

- Figure 12. Radiation patterns of a circumferential slot
in a conducting prolate spheroid.
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Figure 13. Radiation patterns of a monopole antenna
on a conducting prolate spheroid.

are calculated and measured in the plane tangent to the spheroid at
the source location. The prolate spheroid geometry is shown in Figure
14. Note that the E b component is due to the spheroid surface; it
would vanish if the source were on a flat ground plane. Finally, a
series of curves for the b-component of the electric field due to a
circumferential slot on the spheroid are shown in Figure 15. Notice
that the calculated and measured results are in very good agreement
for the cases when the receiver is in the lit region (0=740), in the

shadow boundary plane (8=900) and in the shadow region (0=1000). ThisI
confirms the validity of the newly developed GTD solution for an antenna
radiating from a conducting convex body.

18
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I Figure 14. Prolate spheroid geometry.
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Figure 15. Radiation patterns of a circumferential slot
in a conducting prolate spheroid.
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II. SIGNIFICANT ACCOMPLISHMENTS

A series of accomplishments have been made under the present

contract. They are summarized below:

1. A paper entitled "Near Field Patterns Analysis for Airborne

i Antennas," has been accepted for publication by the IEEE

Transactions for Antennas and Propagation.

2. An oral paper was presented at the 1978 International IEEE/AP-S

rSymposium at University of Washington; Seattle, Washington.

The paper was presented in the session on high frequency

diffraction and entitled "A Uniform GTD Solution for the

Propagation from Sources on a Perfectly Conducting Convex

Surface,"

3. A paper entitled "A Uniform GTD Solution for the Radiation

From Sources on a Convex Surface" is under preparation and

will be submitted for publication in the IEEE Transactions

on Antennas and Propagation.
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